This ET&C Paper in Press manuscript is in its original unedited form and has not been copyedited or formatted for final production. This manuscript is fully citable. ©2008 Society of Environmental Toxicology and Chemistry (SETAC). MS 08-036 3 Environmental Toxicology Nanotechnology **Running head**: Effects of ingested nano-sized TiO₂ on *Porcellio scaber* **CORRESPONDING AUTHOR:** ANITA JEMEC National Institute of Chemistry Hajdrihova 19 SI-1000 Ljubljana, Slovenia Tel: 0038614760245 Fax: 0038614760300, anita.jemec@ki.si Word Count: 6597

	This ET&C Paper in Press manuscript is in its original unedited form and has not been copyedited or formatted for final production. This manuscript is fully citable. ©2008 Society of Environmental
	Toxicology and Chemistry (SETAC).
25	Nanotechnology
26	
27	EFFECTS OF INGESTED NANO-SIZED TITANIUM DIOXIDE ON TERRESTRIAL
28	ISOPODS PORCELLIO SCABER
29	
30	Anita Jemec ^{†,*} , Damjana Drobne ⁺ , Maja Remškar [§] , Kristina Sepčić ⁺ , Tatjana Tišler ⁺
31	
32	[†] National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
33	[*] University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, SI-1000
34	Ljubljana, Slovenia
35	[§] Institut »Jožef Stefan«, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
36	
37	(Received 24 January 2008; Accepted 17 March 2008)
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	

	This ET&C Paper in Press manuscript is in its original unedited form and has not been copyedited or
	formatted for final production. This manuscript is fully citable. ©2008 Society of Environmental
	Toxicology and Chemistry (SETAC).
48	
49	*To whom correspondence may be addressed (anita.jemec@ki.si).
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	

66 Abstract-The effects of ingested nano-sized titanium dioxide (TiO₂, anatase, 15 nm) on

67 terrestrial isopods *Porcellio scaber* (Isopoda, Crustacea) after short-term (3 d) dietary exposure

68 were studied. Activities of antioxidant enzymes, such as catalase (CAT) and glutathione-S-

69 transferase (GST) in digestive glands were affected in a dose-independent manner, but higher-

70 level isopod endpoints, including weight change, feeding rate, food assimilation efficiency and

survival, were not affected up to the highest tested concentration of TiO₂ in the food (3000 μ g/g

food). Exposure concentrations of 0.5, 2000, and 3000 μ g of nonsonicated TiO₂/g food decreased

73 CAT and GST activities, but intermediate concentrations (1; 10; 100; 1000 µg/g food) did not

result in significant changes of enzyme activities. When the dispersion of TiO₂ was sonicated, no

r5 effects on enzyme activities or higher level biomarkers were observed. The experimental set-up

76 with terrestrial isopods designed for dissolved chemicals is also suitable for testing the effects of

77 ingested nanoparticles, but the presentation of toxicity data needs to be adapted according to the

78 mode of action of nanoparticles and their specific characteristics.

79

80 Keywords-Nanoparticles, Feeding, Biomarkers, Terrestrial, Titanium dioxide

- 81
- 82
- 83
- 84
- 85
- 86

INTRODUCTION

87

89 Bulk titanium dioxide (TiO₂) in micrometer-size dimensions has been in use for decades in 90 cosmetics, pharmaceutical, paint, and paper industries [1]. Titanium dioxide was labeled by 91 American conference of governmental industrial hygienists as a nuisance dust and it is thus 92 considered to be an inert dust not producing significant toxic effects under realistic exposures 93 [2]. Even though adverse effects of micrometer-sized TiO_2 have been demonstrated [3], TiO_2 94 traditionally is often considered to be nontoxic [4]. 95 In the last decade, TiO₂ has been extensively produced in nano-sized form that has been used 96 increasingly in pollution treatment and remediation [4,5], disinfection, self-cleaning glass, solar 97 cells, electric devices, food additives, pharmaceuticals, and cosmetic products [6]. Nano-sized 98 TiO₂ is a well known photocatalyst. Namely, the TiO₂ crystalline forms are semiconductors, 99 meaning that they can be photo-excited to generate electron-hole pairs on its surface, which 100 results in their strong oxidizability [7]. This characteristic enhances the formation of reactive 101 oxygen species (ROS), which is among the main toxic mechanisms proposed for observed toxic 102 effects of photo-irradiated nano-sized TiO₂ [7]. 103 Nano-sized TiO₂ without photo-activation has also been shown to cause adverse effects on a 104 variety of cell types, tissues and organisms. Examples include the cytotoxicity to rat lung 105 alveolar macrophages [8], human dermal fibroblast and human lung carcinoma cells [9], 106 apoptosis of Syrian hamster embryo fibroblasts [10], hepatic injury in mice [11], and pathologic 107 changes of gills in fish [12]. Similarly, it has been proposed, that the toxic mechanism of 108 nonirradiated nano-sized TiO₂ is ROS mediated [9, 10, 13]. Increased levels of hydrogen 109 peroxide, increased lipid peroxidation and decreased levels of reduced glutathione were observed

110	in human bronchial epithelial cell line [13] and rat alveolar macrophages [8] exposed to
111	nonirradiated nano-sized TiO_2 . The ability of nano-sized TiO_2 to induce ROS formation without
112	photo-activation has been related to its crystallinity and electronic configurations [14] and
113	indirect effect on the antioxidant system of the cell [15].
114	Because TiO ₂ is classified as a dust, a majority of studies have been focused on its uptake by
115	and effects on the lungs [1]. However, since TiO_2 is used in food production, medicine, and
116	cosmetics, its oral ingestion is also an important exposure route [15]. Toxic effects of orally
117	ingested nano-sized TiO_2 have been demonstrated in mice [11] and rainbow trout [12].
118	Due to increasing introduction of nano-sized TiO ₂ to the environment, it could potentially
119	provoke effects on a variety of organisms in different ecosystems. However, until recently the
120	majority of toxicity studies were focused on laboratory test mammals, such as rats and mice.
121	During the last two years, studies on the effects of nano-sized TiO_2 on aquatic organisms have
122	been performed [12, 16-18], but terrestrial toxicity studies are still lacking.
123	Currently, it is believed that a link between lower and higher level responses in test
124	organisms will provide the most relevant toxicity data for different organisms. Responses at
125	lower dose levels (biochemical biomarkers) can aid in the identification of the mechanisms
126	underlying the effects at higher levels of biological organization. Their disadvantage is however
127	often reflected in high variability of the response when compared to more integrated level
128	biomarkers [19].
129	The two biochemical biomarkers investigated in the present study catalase (CAT) and
130	glutathione-S-transferase (GST) are very highly conserved enzymes that have been identified in
131	most organisms, including vertebrates, invertebrates, plants, fungi, and bacteria [20]. The main
132	function of CAT is to catalyze the decomposition of hydrogen peroxide derived from the

133 formation of other ROS such as superoxide or hydroxyl radical. Glutathione-S-transferase is a 134 member of a large family of multifunctional enzymes involved in the cellular detoxification of 135 many xenobiotics and physiological substances, including the endogenous products during lipid 136 peroxidation [20]. The activities of CAT and GST have been related mainly to antioxidant 137 function against ROS produced as a result of chemical stress, but they also have a central 138 metabolic function in the metabolism of ROS during normal cell functioning, where ROS appear 139 as side-products in a number of metabolic pathways [21, 22]. In cells stressed by exogenous chemicals, CAT and GST activities are reported to be 140 141 increased at lower concentrations of the chemical as a response to ROS production [20]. When 142 the chemical is present at higher concentrations, the decrease of enzyme activities has been 143 explained as a consequence of direct enzyme inhibition by the chemical, or as a result of cellular 144 dysfunction [23, 24].

145 In the present paper, the effects of ingested nano-sized TiO₂ on terrestrial isopod *Porcellio* 146 scaber (Isopoda, Crustacea) after a short-term (3 d) exposure are reported. The responses of biomarkers at different levels of biological organization were measured to link the effects of 147 148 lower-level effects of ingested TiO₂ to responses at higher levels. Based on the reports that nano-149 sized TiO₂ induces the production of ROS, we measured the activity of two biochemical 150 biomarkers CAT and GST [13, 14]. Weight change, feeding rate and food assimilation efficiency 151 of *P. scaber* were among conventional physiological parameters studied. Other studies provide 152 evidence that biochemical biomarkers are influenced by abiotic and biotic factors [25, 26]. 153 Therefore the effects of laboratory rearing, moult stage, and gender on enzyme activities were 154 systematically evaluated prior to the main experiment with nano-sized TiO₂. We discuss the 155 effects of nano-sized TiO₂ on CAT and GST activities, and the suitability of the P. scaber test

	This ET&C Paper in Press manuscript is in its original unedited form and has not been copyedited or
	formatted for final production. This manuscript is fully citable. $©2008$ Society of Environmental
156	Toxicology and Chemistry (SETAC). for assessing the effects of ingested nanoparticles.
157	
158	MATERIALS AND METHODS
159	
160	Chemicals
161	
162	The following chemicals were purchased from Sigma-Aldrich (Munich, Germany): dibasic
163	and monobasic potassium phosphate, hydrogen peroxide (30%), 1-chloro-2,4-dinitrobenzene, L-
164	glutathione (reduced form). Protein assay reagents A and B were purchased from Pierce
165	(Rockford, IL, USA). All chemicals were of the highest commercially available grade, typically
166	99% or higher.
167	
168	Characterization of nano-sized TiO_2 particles
169	
170	The nanoparticles of TiO ₂ were supplied by Sigma-Aldrich in a form of a powder with 99.7%
171	purity. The following characteristics were provided by the supplier: anatase crystalline structure,
172	average particle size 15 nm, and surface area 190 to 290 m^2/g .
173	Before applying TiO_2 to the leaves, different concentrations of TiO_2 were suspended in
174	bidistilled water with pH value of 5.7. The pH of the dispersions was independent on the
175	concentration of TiO ₂ and was the same as in bidistilled water. The same bidistilled water was
176	used in control group and proved not to be toxic to isopods.
177	The sonicated and nonsonicated dispersions of TiO ₂ were inspected with transmission
178	electron microscope analyses and dynamic light scattering technique (DLS). The dispersion

179	prepared in bidistilled water (0.7 g/L) was sonicated for 30 min using 10 s pulses with 13872 J of
180	the total input of energy (Sonics vibra-cell, Ultrasonic processor VCX 750 Watt; Sonics &
181	Materials, Newtown, CT, USA). Both sonicated and nonsonicated dispersions were put on
182	carbon-coated grids, dried at room temperature and examined with a 200 keV field emission
183	transmission electron microscope (Philips CM 100, Koninklijke Philips Electronics, Eindhoven,
184	The Netherlands) and analyzed by transmission electron diffraction to determine the TiO ₂ phase.
185	The same concentrations of sonicated and nonsonicated dispersions prepared in ultra-pure
186	water (Millipore, Billerica, MA, USA; ion free, $pH = 5.7$) (0.0066; 0.066; 0.222 g/L) were
187	inspected by DLS using a 3D-DLS-SLS Spectrometer (LS Instruments, Firbourg, Switzerland).
188	Other concentrations of TiO ₂ prepared for toxicity experiments were also inspected by DLS, but
189	the measurements were not possible, because the signal was either too weak (at 0.00066 g/L) or
190	too strong (at 0.6667 and 2 g/L of TiO ₂). The DLS measurements were performed on the TiO ₂
191	dispersions without the addition of 0.1% tetrasodium pyrophosphate as previously used by
192	Warheit et al. [16], to mimic the composition of the dispersion used in toxicity tests.
193 194	Effects of laboratory conditions on GST and CAT activities
195	
196	The effects of laboratory conditions on the CAT and GST activities of isopods collected from
197	the field were investigated. Animals were brought to the laboratory from three different field
198	locations in Slovenia: two sites near Domžale (vicinity of Ljubljana, Slovenia) (locations 1 and

199 2), and Radlek (Kozjansko, Slovenia) (location 3). All three locations have previously been used

- as reference sites for isopod collection in toxicity studies, and were found uncontaminated [27,
- 201 28]. The activities of both enzymes were determined randomly after different periods (up to 55

d) of culturing in the laboratory. The number of animals analyzed at different times is given in

203 **Table 1**. As a reference, a laboratory culture originating from a completely different location and

204 held in the laboratory for one year was also analyzed for enzyme activities.

205

206 Exposure of P. scaber to TiO_2

207

208 Test organisms. Terrestrial isopods (Porcellio scaber, Latreille 1804) were collected under 209 the litter layer in an uncontaminated location in the vicinity of Ljubliana (location 1). No 210 significant differences in enzyme activities of the animals analyzed within 1 to 3 d after the 211 collection from the field were found between the three locations mentioned above (Fig. 1), 212 therefore location 1 was selected as a source of animals for toxicity tests because of the close 213 proximity to the laboratory. In the laboratory, the animals were kept in a terrarium $(20 \times 35 \times 20)$ 214 cm) filled with a 2 to 5 cm layer of moistened sand and soil and a thick layer of partly 215 decomposed hazelnut tree leaves (Corylus avellana). The substratum in the terrarium was heated 216 to 80°C for several hours to destroy predators (spiders) before the introduction of the isopods. 217 The culture was kept at controlled room temperature (21±1°C), 16:8 h light:dark regime and 218 high humidity.

Food preparation. Hazelnut tree leaves were collected in an uncontaminated woodland and dried at room temperature. Dry leaves were cut up into pieces of similar surface area, and weighed. Pieces of approximately 100 mg were selected for the experiments. Prior to the application of the TiO_2 dispersion, the leaves were kept in humid Petri dishes to facilitate the absorption of applied TiO_2 dispersion. Afterwards, the leaves were dried for 24 h at room temperature. The leaves were not directly exposed to light with the intensity of the illumination:

225 16 h with 350 lux, and 8 h with 10 lux. The periods of maintenance of leaves in humid 226 environment and conditions for drying of the leaves were the same in all experiments. 227 The TiO₂ was suspended in bidistilled water using a vortex (20 s, 2000 rpm) and prepared freshly 228 each time prior to the experiment. No surfactants were used to disperse the TiO₂, since previous 229 studies have shown that dispersion using solely sonication is adequate [12, 16]. We applied 150 230 μ l of the dispersion per 100 mg of leaf onto the lower leaf surfaces. Prior to the pipetting, the 231 dispersion was each time rotated on vortex for 5 s. Two types of TiO₂ dispersions were applied 232 onto the leaves; nonsonicated and sonicated. The sonicated dispersion was prepared using a 233 sonicator (30 min, 10 s pulses; Sonics vibra-cell, Ultrasonic processor VCX 750 Watt; Sonics &

Materials). Animals in the control group were fed with the leaves prepared in the same way, but treated with the bidistilled water only.

236 Experimental design. The adults of P. scaber with body weights ranging from 30 to 80 mg, 237 of both sexes and all moult stages, were exposed to TiO₂ within 1 to 11 d after the collection in 238 the field. Each animal was placed individually in a Petri dish, to which individual pieces of dry leaves dosed with TiO₂ were added. Humidity in the Petri dishes was maintained by regular 239 240 spraying with tap water on the internal side of the lids. All Petri dishes were placed in a large 241 plastic-covered glass container maintained at relative humidity close to 100%, and a 16:8 h 242 light:dark regime without the direct proximity of the lamp (illumination 16 h with 15 lux, and 8 h 243 with 5 lux).

After 3 d of exposure, lower and higher level endpoints were evaluated according to the test protocol (**Table 2**). The animals and leaves were weighed after drying at room temperature for 246 24 h, and the faecal pellets were counted and weighted after drying in the exsiccator for 48 h. 247 The animals were dissected and the digestive glands (hepatopancreas) were isolated for

248 measurements of CAT and GST activities. Animal mortality was also recorded.

249 Three separate experiments with a different range of tested concentrations were performed 250 (Table 3). Since currently no data exists on the environmental concentrations of nano-sized 251 TiO₂, the concentrations of TiO₂ used in the present study were selected based on preliminary 252 long-term studies, in which the effects on feeding and enzyme activities were observed at 1000 253 μg of TiO₂/g leaf (Drobne Damjana, University of Ljubljana, Biotechnical Faculty, Slovenia, 254 unpublished data, preliminary study). In experiment A, the isopods were exposed to high 255 concentrations (1000, 2000, 3000 μ g/g leaf) of a nonsonicated dispersion of TiO₂. This 256 experiment was repeated three times, using ten animals per concentration each time. In 257 experiment B, the same high concentrations of sonicated dispersion of TiO₂ were tested and one 258 additional group was exposed to the highest tested concentration (3000 µg/g leaf) of 259 nonsonicated dispersion of TiO₂. This experiment was repeated twice, each time with ten 260 animals per concentration. In experiment C, the animals were exposed in three repeated 261 experiments to various very low concentrations (0.1, 0.5, 1, 10, 100 µg/g leaf) (C1, C2, C3) of a 262 nonsonicated dispersion of TiO₂. The number of animals and concentrations tested in each 263 repetition are described in Table 3.

264

265 Determination of enzyme activities

266

Animals of both genders and at all moult stages were used for enzyme analyses and a
separate enzyme sample was prepared from each animal. The whole digestive gland was
homogenized for 3 min in 0.8 ml of 50 mM phosphate buffer pH 7.0, using a Teflon®–glass
Elvehjem-Potter homogenizer (Cowie Technology, Middlesbrough, UK). The homogenate was

- 271 centrifuged for 25 min at 15000 g and 4°C. The activities of both GST and CAT were measured
- three times in each sample.
- 273 Glutathione-S-transferase activity was measured on microtiter plates (Bio-Tek[®] Instruments,
- 274 Winooski, VT, USA; PowerWaveTM XS) [29]. Final concentrations of both 1-chloro-2,4-
- 275 dinitrobenzene and reduced glutathione, prepared in 100 mM potassium phosphate buffer pH
- 276 6.5, were 1 mM. A detailed description of the preparation of 1-chloro-2,4-dinitrobenzene
- solution is described in Jemec et al. [29]. We added 50 µl of the protein supernatant to start the
- 278 reaction, which was followed spectrophotometrically at 340 nm and 25°C for 3 min.
- 279 Glutathione-S-transferase activity was expressed in nmoles of conjugated reduced
- 280 glutathione/min/mg protein (extinction coefficient $\varepsilon_{340} = 9600$ L/mol/cm).
- 281 Catalase activity was determined according to the method of Aebi [30]. We combined 100 μl
- of protein supernatant with 700 µl of hydrogen peroxide solution (11.6 mM) in 50 mM potassium
- 283 phosphate buffer pH 7.0. The final concentration of hydrogen peroxide was 10.2 mM. The
- reaction was followed spectrophotometrically for 3 min at 25°C and 240 nm on a Shimadzu
- 285 ultraviolet-2101PC spectrophotometer (Shimadzu, Kyoto, Japan). Catalase activity was
- expressed in μ moles of degraded hydrogen peroxide/min/mg protein ($\epsilon_{240} = 43.6$ L/mol/ cm).
- 287 Protein concentration was measured using a BCA[™] Protein Assay Kit, a modification of the
- bicinchoninic acid protein assay (Pierce, Rockford, IL, USA).
- 289
- 290 Data analysis
- 291

292 Only animals between the two moults and females without brood chambers were included in 293 the analyses of higher level endpoints, because both the moult and the presence of broods might

294	influence the feeding and animal mass change. The feeding rate and a defecation rate of isopods
295	were calculated as the mass of consumed leaf and mass of faecal pellets per animal wet weight
296	and per day, respectively. The food assimilation efficiency was calculated as the difference
297	between the feeding and defecation rates. The animal mass change was determined as the
298	difference in animal mass at the beginning and at the end of the experiment. The amount of the
299	daily consumed TiO_2 was calculated from the mass of consumed leaf and the corresponding
300	concentration of TiO ₂ applied.
301	The significant differences between the control and exposed groups of animals were
302	determined by Kruskal-Wallis analysis and Mann-Whitney U test (p <0.05) using Statgraphics
303	software (Statgraphics Plus for Windows 4.0, Statistical Graphics, Herndon, VA, USA).
304	Homogeneity of variance was tested using Levene's test.
205	
305	
303 306	RESULTS
	RESULTS
306	RESULTS Characterization of nano-sized TiO ₂ particles
306 307	
306 307 308	
306 307 308 309	Characterization of nano-sized TiO ₂ particles
 306 307 308 309 310 	Characterization of nano-sized TiO_2 particles The transmission electron diffraction pattern revealed the TiO_2 to be in its anatase phase. The
 306 307 308 309 310 311 	Characterization of nano-sized TiO_2 particles The transmission electron diffraction pattern revealed the TiO_2 to be in its anatase phase. The TiO_2 nanoparticles were homogeneous in shape and size, in average 15 nm in diameter, and with
 306 307 308 309 310 311 312 	Characterization of nano-sized TiO_2 particles The transmission electron diffraction pattern revealed the TiO_2 to be in its anatase phase. The TiO_2 nanoparticles were homogeneous in shape and size, in average 15 nm in diameter, and with up to 1 to 5 aspect ratio between the diameter and length forming elongated spheroidal shapes
 306 307 308 309 310 311 312 313 	<i>Characterization of nano-sized TiO</i> ₂ <i>particles</i> The transmission electron diffraction pattern revealed the TiO ₂ to be in its anatase phase. The TiO ₂ nanoparticles were homogeneous in shape and size, in average 15 nm in diameter, and with up to 1 to 5 aspect ratio between the diameter and length forming elongated spheroidal shapes (Fig.1). They were strongly agglomerated. The comparison of sonicated and nonsonicated

317 those formed or retained in ultrasound agitation.

The DLS analyses on the other hand revealed the difference in the size of agglomerates after sonication procedure. The median particle size of TiO₂ in sonicated aqueous dispersion was 350 to 500 nm, and 780 to 970 nm in nonsonicated dispersion.

321

322 Effects of laboratory conditions on GST and CAT activities

323

324 The activities of both enzymes gradually decreased during the culturing of isopods in the 325 laboratory. After three to four weeks of culturing in the laboratory, the span of enzyme activities 326 became narrow, remaining at a certain level and higher enzyme activities, which were observed 327 in certain specimens during the first 3 d, were no longer detected. After one year, the GST 328 activities of animals from all the tested locations were the same as after three to four weeks of 329 culturing in the laboratory. The same trend was observed for CAT activity at location 1, but at 330 locations 2 and 3 the activity of CAT was significantly higher in the reference laboratory culture 331 kept for one year in the laboratory than in those tested after 40 or 55 d (Fig. 2). 332 Enzyme activities of animals analyzed after 1 to 3 d, and 5 to 14 d were grouped to enable 333 comparison with the values obtained for control animals from toxicity experiments, which were 334 all analyzed within 4 to 14 d of the collection from the environment (Table 1). 335 336 Variability of GST and CAT activities 337

The CAT and GST activities in control animals from different toxicity experiments weregrouped in order to investigate the normal range of variability for these biochemical biomarkers

- 340 and their dependence on gender, moult and presence of brood chamber. The animals included
- 341 were dissected within 4 to 14 d after the collection from the field.
- 342 Relatively high coefficients of variability for CAT and GST activities were observed (63.2
- and 41.8%, respectively). The range of activities for control isopods were 0 to 55 µmol/min/mg
- protein, and 83 to 624 nmol/min/mg protein for CAT and GST, respectively (Fig. 3). No
- 345 statistically significant differences in the CAT and GST activities were found between males and
- 346 females, between animals in the intermoult and moult stage, and between females with and
- 347 without brood chamber.
- 348

349 Effects of TiO₂ on P. scaber

350

Effects of TiO₂ on physiological endpoints. After 3 d of exposure to TiO₂, no statistically
significant effects were observed on the feeding rate, defecation rate, food assimilation
efficiency, weight change and mortality of *P. scaber*. When higher level endpoints were
compared, no differences in the effects of TiO₂ between nonsonicated and sonicated TiO₂ were
observed.

356 Daily consumed levels of TiO_2 were calculated based on consumed food. No differences in 357 the quantity of consumed sonicated and nonsonicated TiO_2 were observed (**Fig. 4**).

358

*Effects of TiO*₂ *on enzyme activities.* Both enzyme activities were found to be decreased at 2000 and 3000 μ g/g leaf of nonsonicated TiO₂ (experiment A) (**Fig. 5** a,b), but no changes were observed in animals exposed to sonicated TiO₂ (experiment B) (Fig. 5 c,d). The decrease in activity of both enzymes was also observed at 3000 μ g/g leaf of nonsonicated TiO₂, in the

	This ET&C Paper in Press manuscript is in its original unedited form and has not been copyedited or
	formatted for final production. This manuscript is fully citable. ©2008 Society of Environmental
363	Toxicology and Chemistry (SETAC). experiment B (Fig. 5 c,d). In experiment C, with low concentrations of TiO_2 , the activities of
364	both enzymes were decreased at 0.5 $\mu g/g$ leaf and again at 3000 $\mu g/g$ leaf of nonsonicated TiO_2
365	(Fig. 5 e,f).
366	Based on the changes of CAT and GST activities presented above, it was concluded that the
367	response of both enzyme activities was independent of the dose of ingested nano-sized TiO_2 .
368	This response is referred to here as binary. The relationship between the consumed levels of TiO_2
369	and the response of enzyme activities is shown in Figure 6 .
370	
371	DISCUSSION
372	
373	The ingested nano-sized TiO ₂ affected the activities of two antioxidant enzymes, CAT and
374	GST, in the digestive glands (hepatopancreas) of terrestrial isopods, Porcellio scaber, after 3 d of
375	exposure. The response was not dose-dependent. Only exposure concentrations 0.5, 2000, and
376	3000 $\mu g/g$ of nonsonicated TiO_2 (corresponding to 0.066, 0.389, and 0.685 mg/kg body wt of
377	total consumed $TiO_{2,}$ respectively), caused a decrease in the CAT and GST activities;
378	intermediate concentrations failed to provoke significant changes. Higher level responses like
379	feeding rate, defecation rate, food assimilation efficiency, weight change or mortality were not
380	affected up to 3000 μ g/g of nonsonicated TiO ₂ in the food. When the dispersion of TiO ₂ was
381	sonicated prior to application, no effects on enzyme activities or higher level biomarkers were
382	observed.
383	We observed a large range of CAT and GST activities in the hepatopancreas of isopods
384	brought directly from the field. During the cultivation of isopods in the laboratory, these two
385	enzyme activities gradually decreased, and after approximately four weeks remained at a given

386 level for a longer period. These changes could be explained as a part of a mechanism of 387 acclimation to laboratory conditions. Isopods in the natural environment are constantly exposed 388 to heterogeneous abiotic and biotic conditions, which result in the need for a pool of enzymatic 389 and nonenzymatic compounds, including CAT and GST, related to antioxidant defense. The 390 animals kept in the laboratory are exposed to a less variable environment may subsequently 391 result in a lower and narrower range of antioxidant enzyme activities. The effects of natural 392 factors on the activities of antioxidant enzymes are known [26]. In mussels (Mytilus 393 galloprovincialis) for instance, a high seasonal variation in antioxidant enzymes was reported 394 [25]. Oxidative changes have been related to changes in metabolic activity of the organisms, and 395 these changes depend on the intensity of feeding, temperature, and reproduction stage [21, 22]. 396 We found no dependence of CAT and GST activities on the gender, moult stage or presence 397 of neonates in the brood chamber of *P. scaber*. Similarly, no links were found between the 398 gender and GST activities of P. scaber and O. assellus [31] and CAT activities and gender of the 399 marine amphipod Gammarus locusta [32]. In other organisms, some inconsistent results have 400 been reported. The CAT activities of mosquitofish (*Gambusi holbrooki*) are higher in males [33], 401 CAT activities in marine shrimp Aristeus antennatus are higher in females [34], and GST 402 activities in goodeid fish (Girardinichthys viviparus) are higher in males [35]. From these data, it 403 would appear that the effect of gender on CAT and GST activities is species-specific. 404 Hepatopancreatic CAT and GST activities in isopods fed with nonsonicated TiO₂ for 3 d 405 decreased in a dose-independent manner. Only 0.5, 2000, and 3000 µg/g of nano-sized TiO₂ in 406 the food-reduced CAT and GST activities; the intermediate concentrations (1; 10; 100; 1000 407 $\mu g/g TiO_2$) had no effect. It is evident that the observed changes of enzyme activities do not 408 depend on the concentration of TiO₂ nanoparticles, but are related to other properties of the

409 nanoparticles. From the present study, it is impossible to deduce the explanation for observed 410 phenomena. However, at very high concentrations of TiO_2 , the effect was similar to that of any 411 other dissolved chemical at high doses. The organism cannot cope with large amounts of 412 nanoparticles or disolved chemicals, and the enzyme activities are affected as a result of the 413 impact on the general physiological state. Why low doses of TiO_2 also affected the two enzymes, 414 remains a challenge for further work.

415 Different relationships between the concentration of nano-sized TiO₂ and its effects have 416 been reported previously. For example, more pronounced effects at lower concentrations of 417 nano-sized TiO₂ (20 nm) have been reported for micronuclei sister chromatid exchanges in 418 Chinese hamster ovary cells [10]. An increase of algal growth was observed at 0.01, 0.1, and 10 419 mg/L of TiO₂ (140 nm), followed by a decrease at 100 mg/L [16]. No relationship between the 420 dose and immobility of daphnids was observed when the latter were exposed to TiO_2 (25 nm) in 421 a range from 1 to 3 mg/L [17]. On the other hand, a clear relationship between the dose and the 422 response was observed in different cytotoxicity assays with human cell line A549 cells at 423 concentrations of 0.3, 3, 30, 300, 1500, and 3000 μ g/ml of nano-sized TiO₂[9]. 424 Because of the unique surface properties of nanoparticles, mechanisms of toxic action are 425 suggested which are distinct from the effect of soluble chemicals [1, 36]. In studies of 426 mechanism of action, Oberdörster et al. [37] have recommended a careful selection of tested 427 concentrations of nanoparticles. The importance of studying low concentrations of nanoparticles 428 to detect the possible hormetic response was emphasized. In the present study, the changes of 429 enzyme activities were detected at low concentrations, but the observed response was not 430 stimulatory as is typical for hormesis [38].

431 One of the primary problems in toxicity studies with nanoparticles is the preparation of

432	exposure medium, since the particles tend to form aggregates in water. Most commonly, the			
433	dispersion of nano-sized TiO_2 is sonicated to diminish the aggregation of particles [9]. The			
434	control of the size of aggregates delivered to terrestrial isopods is impossible, because the			
435	preparation of the food involves drying of the stock dispersions on the leaves, which results in			
436	changes in aggregate formation. Furthermore, the TiO ₂ ingested by isopods can be further			
437	(dis)aggregated in the digestive system where a pH is 6 to 6.5 and high concentration of			
438	surfactants is present [39]. Until no standard protocol is established for terrestrial toxicity studies			
439	of nanoparticles, we recommend the sonication of the stock dispersions prior to application onto			
440	food, because it enables the application of more uniform aggregates than without sonication.			
441	The binary response of CAT and GST activities obtained in the present study differs from the			
442	typical dose-response described for soluble chemicals and consequently, the determination of			
443	toxicological data, such as the no- or lowest-observed-effect concentration (level) (NOEC,			
444	NOEL, LOEC, LOEL) or effect concentrations (ECx, ELx, etc.) is not possible. No similar			
445	reports for nano-sized TiO_2 are found in the literature and it will be interesting to see whether the			
446	binary response is also a characteristic of other nanoparticles and endpoints when a wide range			
447	of concentrations is tested.			
448	Previous ecotoxicity studies with aquatic test organisms showed that nano-sized TiO_2			
449	(aggregates in water 140 nm) exhibit low concern for the immobility of rainbow trout			
450	Oncorhynchus mykiss and water fleas Daphnia magna (no effect up to 100 mg/L) and medium			
451	concern for the growth of algae Pseudokirchneriella subcapitata (72 h median effective			
452	concentration EC50 = 87 mg/L) [16]. Similarly, no effect on daphnid immobility was observed			
453	up to 500 mg/L of sonicated nano-sized TiO_2 (aggregates in water 100-500 nm) [18]. The results			

454 of the present study imply, that nano-sized TiO_2 after 3-d of exposure is less toxic for the feeding

455 rate of isopods than some dissolved metals, for instance ZnCl₂. Namely, our unpublished data 456 show, that the feeding rate of isopods is affected already after 3-d of feeding with 2000 µg/g of Zn^{2+} , while no effect of 3000 µg/g of TiO₂ was observed in the present study after the same 457 exposure period. After 14 d of exposure, the feeding of isopods was affected at 125 μ g/g of Cd²⁺, 458 1200 μ g/g of Cu²⁺ and 1800 μ g/g of Zn²⁺ [28]. Further studies on the effects of the same nano-459 460 sized TiO₂ on isopods after 14-d of exposure are under preparation and will clarify the relative 461 toxicity of nano-sized TiO₂ for isopods. 462 Data on currently detected environmental concentrations of nano-sized or bulk TiO₂ in the

463 terrestrial or aquatic environment are not available, since TiO₂, not included in the priority list of

464 toxic pollutants in European Union ([40];

465 http://www.mepa.org.mt/index.htm?eu_int_affairs/eu_legislation/mainpage.htm&1), is not

466 systematically monitored. According to the predicted future use of various nanoparticles,

467 including TiO₂, they will undoubtedly enter the environment either via domestic or industrial

468 wastewaters or direct use for the removal of pollutants from contaminated water and soil, use in

469 water treatment filters and control of algal growth in water systems. Warheit et al. [16] recently

470 reported a minimum base set of toxicity tests used for nanoparticle risk management, including

471 pulmonary toxicity studies, acute dermal toxicity and sensitization studies, acute oral and ocular

472 toxicity studies, genotoxicity studies, and aquatic toxicity studies. Due to potential introduction

473 of nanoparticles in the soil, the inclusion of a set of terrestrial toxicity tests in risk

474 characterization of nanoparticles is necessary.

The advantage of toxicity tests using the terrestrial isopods lies in the possibility to determine the consumption levels of chemicals and subsequently the effective dose. We recommend the use of the same experimental design both for dissolved chemicals and for nanoparticles, but the

478 presentation of toxicity data needs to be adapted to reflect the nanoparticles' mode of action and 479 specific characteristics. Since virtually no agreement currently exists as to how to present the 480 toxicity data for nanoparticles, such data will probably have to be evaluated retrospectively and it 481 is therefore very important to provide as much supplementary data as possible. The data should 482 include, for example, a detailed description of organisms (life span, different physiological 483 states, gender, health status), a detailed description of the preparation of dispersions of 484 nanoparticles, characterisation of particles, exposure concentrations or ingested dose per day, 485 total ingested dose, duration of exposure, a range of tested concentrations, and as much toxicity 486 data as possible. Such information can be derived from toxicity testing with terrestrial isopods. 487 488 **CONCLUSION** 489 490 The results of the present study show that hepatopancreatic activities of CAT and GST 491 gradually decrease during the cultivation of isopods (Porcellio scaber) in the laboratory, and that 492 the activities of these two enzymes are not dependent on gender, presence of moult or 493 marsupium. After short-term (3 d) dietary exposure of terrestrial isopods to 15 nm TiO_2 (anatase) 494 the activities of CAT and GST were affected in a dose-independent manner, higher level 495 responses of isopods were not changed, and the sonication procedure of TiO₂ dispersion altered 496 its toxic potential for enzyme activities. The presented experimental set-up with terrestrial 497 isopods was found to be suitable for testing the effects of ingested nanoparticles and is 498 recommended in future risk characterization of nanoparticles.

499

500 *Acknowledgement* – The present study received financial support from Slovenian Research

- 501 Agency and the Slovenian Science Foundation (World Federation of Scientists National
- 502 Scholarship). We thank Ksenija Kogej for DLS analysis.

504 **REFERENCES:**

505	1.	Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R,
506		Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. 2006. The
507		potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre
508		Toxicology 3:1-35.
509	2.	Ferin J, Oberdörster G. 1985. Biological effects and toxicity assessment of titanium
510		dioxides: Anatase and rutile. Am Ind Hyg Assoc J 46:69-72.
511	3.	Borm PJA, Schins RPF, Albrecht C. 2004. Inhaled particles and lung cancer, Part B:
512		Paradigm and risk assessment. Int J Cancer 110:3-14.
513	4.	Masciangoli T, Zhang WX. 2003. Environmental technologies at the nanoscale. Environ
514		<i>Sci Technol</i> 1:102-108.
515	5.	Vaseashta A, Vaclavikova M, Vaseashta S, Gallios G, Roy P, Pummakarnchana O. 2007
516		Nanostructures in environmental pollution detection, monitoring, and remediation.
517		Science and Technology of Advanced Materials 8:47-59.
518	6.	Nohynek JG, Lademann J, Ribaud C, Roberts M. 2007. Grey goo on the skin?
519		Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251-277.
520	7.	Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S. 2004. Photo-irradiated
521		titanium dioxide catalyses site specific DNA-damage via generation of hydrogen
522		peroxide. Free Radical Res 38:439-447.
523	8.	Afaq F, Abidi P, Matin R, Rahman Q. 1998. Cytotoxicity, pro-oxidant effects and
524		antioxidant depletion in rat lung alveolar macrophage exposed to ultrafine titanium
525		dioxide. J Appl Toxicol 18:307-312.
526	9.	Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL.

- 527 2006. Correlating nanoscale titania structure with toxicity: A cytotoxicity and
 528 inflammatory response study with human dermal fibroblasts and human lung epithelial
 529 cells. *Toxicol Sci* 82:174-185.
- 530 10. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D. 2002.
- Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian
 hamster embryo fibroblasts. *Environ Health Perspect* 110:797-800.
- 533 11. Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F,
- 534 Zhao Y, Chai Z. 2007. Acute toxicity and biodistribution of different sized titanium
- 535 dioxide particles in mice after oral administration. *Toxicol Lett* 168:176-185.
- 536 12. Federici G, Shaw BJ, Handy RD. 2007. Toxicity of titanium dioxide nanoparticles to
- 537 rainbow trout (*Oncorhynchus mykiss*): Gill injury, oxidative stress, and other
- 538 physiological effects. *Aquat Toxicol* 84:415-430.
- 539 13. Gurr JR, Wang ASS, Chen CH, Jan KY. 2005. Ultrafine titanium dioxide particles in the
- 540 absence of photoactivation can induce oxidative damage to human bronchial epithelial
- 541 cells. *Toxicology* 213:66-73.
- 542 14. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner
- 543 MR, Nel AE. 2006. Comparison of the abilities of ambient and manufactured
- 544 nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. *Nano*
- 545 *Lett* 6:1794-1807.
- 546 15. Hussain N, Jaitley V, Florence AT. 2001. Recent advances in the understanding of uptake
 547 of microparticulates across the gastrointestinal lymphatics. *Adv Drug Delivery Rev*
- 548 50:107-142.
- 549 16. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. 2007. Development

- of a base set toxicity tests using ultrafine TiO₂ particles as a component of nanoparticle
 risk management. *Toxicol Lett* 171:99-110.
- 552 17. Hund-Rinke K, Simon M. 2006. Ecotoxic effect of photocatalytic active nanoparticles
- 553 (TiO₂) on algae and daphnids. *Environ Sci Pollut Res Int* 13:225-232.
- 554 18. Lovern SB, Klaper R. 2006. *Daphnia magna* mortality when exposed to titanium dioxide 555 and fullerene (C_{60}) nanoparticles. *Environ Toxicol Chem* 25:1132-1137.
- 556 19. Adams SM. 2002. *Biological Indicators of Aquatic Ecosystem Stress*. American Fisheries
 557 Society, Bethesda, MD.
- 558 20. Halliwell B, Gutteridge JMC. 2007. *Free Radicals in Biology and Medicine*. Oxford
 559 University Press, New York, NY, USA.
- 560 21. Abele D, Burlando B, Viarengo A, Pörtner HO. 1998. Exposure to elevated temperatures
- and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antartic

562 intertidal limpet *Nacella concinna*. *Comp Biochem Physiol Part B* 120:425-435.

- 563 22. Regoli F, Niro M, Chiantore M, Winston GW. 2002. Seasonal variations of susceptibility
- to oxidative stress in *Adamussium colbeck*, a key bioindicator species for the antartic
 marine environment. *Sci Total Environ* 289:205-211.
- 566 23. Brown PJ, Long SM, Spurgeon DJ, Svendsen C, Hankard PK. 2004. Toxicological and
- 567 biochemical responses of the earthworm *Lumbricus rubellus* to pyrene, a non-
- 568 carcinogenic polycycil aromatic hydrocarbon. *Chemosphere* 57:1675-1681.
- 569 24. Jemec A, Tišler T, Drobne D, Sepčić K, Fournier D, Trebše P. 2007. Comparative
- 570 toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-
- 571 target arthropod, the microcrustacean *Daphnia magna*. *Chemosphere* 68:1408-1418.
- 572 25. Bochetti R, Regoli F. 2006. Seasonal variability of oxidative biomarkers, lysosomal

- 573 parameters, metallothioneins and peroxisomal enyzmes in the mediterranean mussel
- 574 *Mytilus galloprovincialis* from Adriatic sea. *Chemosphere* 65:913-921.
- 575 26. Monserrat JM, Martinez PE, Geracitano LA, Amado LL, Martins CMG, Pinho GLL,
- 576 Chaves IS, Ferreira-Cravo M, Ventura-Lima J, Bianchini A. 2007. Pollution biomarkers
- 577 in estuarine animals: Critical review and new perspectives. Comp Biochem Physiol Part
- 578 *C* 146:221-234..
- 579 27. Lapanje A, Drobne D, Nolde N, Valant J, Muscet B, Leser V, Rupnik M. 2008. Long-
- 580 term Hg pollution induced Hg tolerance in the terrestrial isopod *Porcellio scaber*
- 581 (Isopoda, Crustacea). *Environ Pollut* doi: 10.1016/j.envpol.2007.09.016.
- Zidar P, Drobne D, Štrus J, Blejec A. 2003. Intake and assimilation of zinc, copper, and
 cadmium in the terrestrial isopod *Porcellio scaber* Latr. (Crustacea, Isopoda). *Bull*
- 584 Environ Contam Toxicol 70:1028-1035.
- 585 29. Jemec A, Drobne D, Tišler T, Trebše P, Roš M, Sepčić K. 2007b. The applicability of
- acetylcholinesterase and glutathione-S-transferase in *Daphnia magna* toxicity test. *Comp Biochem Physiol Part C* 144:303-309.
- 588 30. Aebi H. 1984. Catalase in vitro. *Methods Enzymol* 105:121-126.
- 589 31. De Knecht JA, Stroomberg GJ, Tump C, Helms M, Verweij RA, Commandeur J, Van
- 590 Gestel CAM, Van Straalen NM. 2001. Characterization of enzymes involved in
- biotransformation of polycyclic aromatic hydrocarbons in terrestrial isopods. *Environ Toxicol Chem* 20:1457-1464.
- 593 32. Correia AD, Costa MH, Luis OJ, Livingstone DR. 2003. Age-related changes in
- antioxidant enyzme activities, fatty acid composition and lipid peroxidation in whole
- body *Gammarus locusta* (Crustacea: Amphipoda). *J Exp Mar Biol Ecol* 289:83-101.

- Nunes B, Carvalho F, Guilhermino L. 2004. Age related chronic effects of clofibrate and
 clofibric acid on the enzymes acetylcholinesterase, lactate dehydrogenase and catalase of
 the mosquitofish, *Gambusia holbrooki. Chemosphere* 57:1581-1589.
- 599 34. Mourente G, Díaz- Salvago E. 1999. Characterization of antioxidant systems, oxidation
- 600 status and lipids in brain of wild-caught size-class distributed Aristeus antennatus (Risso,
- 601 1816) Crustacea, Decapoda. *Comp Biochem Physiol Part B* 124: 405-416.
- 602 35. Vega López A, Galar-Martínez M, Jiménez-Orozco FA, García-Latorre E, Domínguez-
- 603 López ML. 2007. Gender related differences in the oxidative stress response to PCB
- 604 exposure in an endangered goodeid fish (*Girardinichthys viviparus*). Comp Biochem
- 605 *Physiol Part A* 146:672-678.
- 606 36. Unfried K, Albrecht C, Klotz LO, Von Mikecz A, Grether-Beck S, Schins RPF. 2007.
- 607 Cellular responses to nanoparticles: Target structures and mechanisms. *Nanotoxicology*
- 608 1:1-20.
- 609 37. Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging
- 610 discipline evolving from studies of ultrafine particles. *Environ Health Perspect* 113:823611 839.
- 612 38. Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, Cedergreen N,
- 613 Cherian MG, Chiueh CC, Clarkson TW, Cook RR, Diamond DM, Doolittle DJ, Dorato
- 614 MA, Duke SO, Feinendegen L, Gardner DE, Hart RW, Hastings KL, Hayes AW,
- 615 Hoffmann GR, Ives JA, Jaworowski Z, Johnson TE, Jonas WB, Kaminski NE, Keller JG,
- 616 Klaunig JE, Knudsen TB, Kozumbo WJ, Lettieri T, Liu SZ, Maisseu A, Maynard KI,
- 617 Masoro EJ, McClellan RO, Mehendale HM, Mothersill C, Newlin DB, Nigg HN, Oehme
- 618 FW, Phalen RF, Philbert MA, Rattan SI, Riviere JE, Rodricks J, Sapolsky RM, Scott BR,

619	TUXICO	Seymour C, Sinclair DA, Smith-Sonneborn J, Snow ET, Spear L, Stevenson DE, Thomas
620		Y, Tubiana M, Williams GM, Mattson MP. 2007. Biological stress response terminology:
621		Integrating the concepts of adaptive response to preconditioning stress within a hormetic
622		dose-response framework. Toxicol Appl Pharmacol 222:122-128.
623	39.	Zimmer M, Topp W. 1997. Homeostatic responses in the gut of Porcellio scaber
624		(Isopoda: Oniscidea) optimize litter degradation. J Comp Physiol Part B 167:582-585.
625	40.	Commission of the European Communities. 2006. Proposal for a directive of the
626		European parliament and of the council on environmental quality standards in the field of
627		water policy and amending Directive 2000/60/EC. 17.7.2006. Brussels, Belgium.
628		
629		
630		
631		
632		
633		
634		
635		
636		
637		
638		

639 **FIGURE LEGENDS:**

640 **Fig. 1**. Transmission-electron micrographs of nanosized titanium dioxide (TiO₂) in bidistilled

641 water. Elongated spheroidal shapes of TiO₂ nanoparticles with an average diameter 15 nm and

- 642 with up to 1 to 5 aspect ratio between the diameter and length (left), and the typical agglomerates
- 643 od nanoparticles (right) are shown.

644

- 645 Fig. 2. The effect of laboratory conditions on catalase (CAT) and glutathione-S-transferase
- 646 (GST) activities in isopods (*Porcellio scaber*) collected from three different field locations:
- 647 location 1 (Ljubljana, Slovenia) (a,d) location 2 (b,e) (Ljubljana, Slovenia) and location 3

648 (Radlek, Slovenia) (**c**,**f**). The laboratory culture (lab. culture) originating from another location

- 649 was analyzed as a reference after one year. The data for all animals and the means of a certain
- time group (black thick line) are shown. Statistically significant differences compared to the first
- time group (1-3 d) (*), and statistically significant differences between the laboratory culture (1
- 452 year) and the preceding time group (#) are shown (p < 0.05).

653

Fig. 3. The variability of catalase (CAT) (a) and glutathione-S-transferase (GST) (b) activities of
control animals and their dependence on the physiological state of isopods (*Porcellio scaber*).
Symbols on the box plot represent: maximum and minimum value (whiskers: ⊥), mean value
(■), females with brood chamber (BC), and females without brood chamber (no BC) (p<0.05).

658

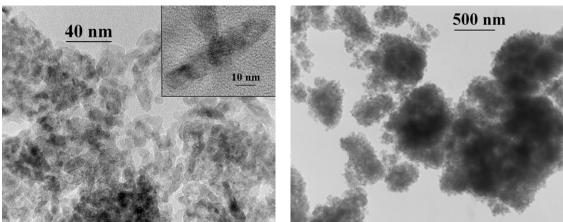
Fig. 4. Daily consumed levels of nano-sized titanium dioxide (TiO₂) in all three experiments (A,

660 B, and C). Symbols on the box plot represent maximum and minimum value (whiskers: \perp), and

661 mean value (\blacksquare). (*n* = nonsonicated TiO₂, *s* = sonicated TiO₂, // on y-axis= a brake).

663	Fig. 5. The effects of high concentrations of nonsonicated nano-sized titanium dioxide (TiO_2)
664	(a,b) (experiment A), sonicated TiO_2 (c,d) (experiment B), and low concentrations of
665	nonsonicated TiO ₂ (\mathbf{e} , \mathbf{f} ,) (experiment C) on catalase (CAT) and glutathione-S-transferase (GST)
666	activities in digestive glands of Porcellio scaber after 3 d of exposure. Symbols on the box plot
667	represent: maximum and minimum value (whiskers: \perp), mean value (\blacksquare), significant changes
668	compared to control (*) (p <0.05), (n = nonsonicated TiO ₂) (graphs c,d). The dashed line
669	represents the mean value of the control.
670	
671	Fig. 6. The relationship between the changes of catalase (CAT) (a) (and glutathione-S-
672	transferase (GST) (b) activities and the amount of a daily consumed nano-sized titanium dioxide
673	(TiO ₂). The data presented are from the experiment C (mean \pm standard errors of the mean). The
674	enzyme activities are expressed as a percentage compared to a mean control value. The dashed
675	horizontal line represents the control (100%).
676	
677	
678	
679	
680	

Table 1: The number of animals analyzed after a certain period of cultivation in the

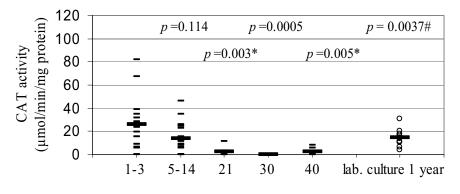

laboratory (Fig.1)

Days	LOCATIONS		
in the laboratory	1	2	3
	Number of animals		
	analyzed		
1	9	9	13
3	7	7	
5	7	6	
8		7	
10	7		
14	8	7	9
17			7
21		7	
28			7
30	6	7	
40		6	
45	7		
55			5

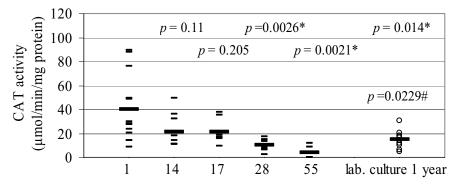
Test organism descrip	otion	Endpoints evaluated			
Invertebrate		Lower level end-points:			
Isopoda, Crustacea		Digestive glands:			
Terrestrial isopod Porcellio scaber		- Glutathione-S-transferase activity			
Type of exposure	Chemical	- Catalase activity			
3 d dietary exposure	nano-sized titanium dioxide	Higher level end-points:			
	(anatase, 15 nm)	- Feeding rate			
		- Defecation rate			
	-Sonicated	- Food assimilation efficiency			
	-Nonsonicated	- Animal mass change			
		- Mortality			

Suspension	Final concentrations of	Experiments						
of TiO ₂	titanium dioxide (TiO ₂)	Tot	al No	o. of exposed animals				
	on leaves (μ g/g leaf)	A	В	С				
Nonsonicated				C 1	C 2	C 3	ΣC	
	0	30	20	6	8	10	24	
	0.1				10	10	20	
	0.5				10	10	20	
	1			6	8		14	
	10			6			6	
	100			6	7	10	23	
	1000	30		6			6	
	2000	30						
	3000	30	20		7		7	
Sonicated	1000		20					
	2000		20					
	3000		20					

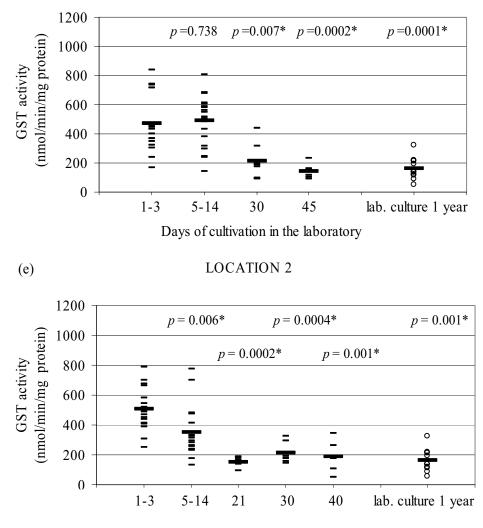
 Σ C- total amount of animals in experiment C.



LOCATION 1 (a) 120 p = 0.039* $p = 0.15 \ p = 0.27$ p = 0.006*(µmol/min/mg protein) 100 CAT activity 80 60 = 40 = Ξ 0 Ξ 20 0 = = 0 1-3 5-14 30 45 lab. culture 1 year Days of cultivation in the laboratory

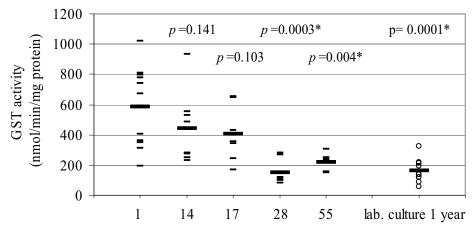

LOCATION 2

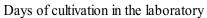
Days of cultivation in the laboratory


(c)

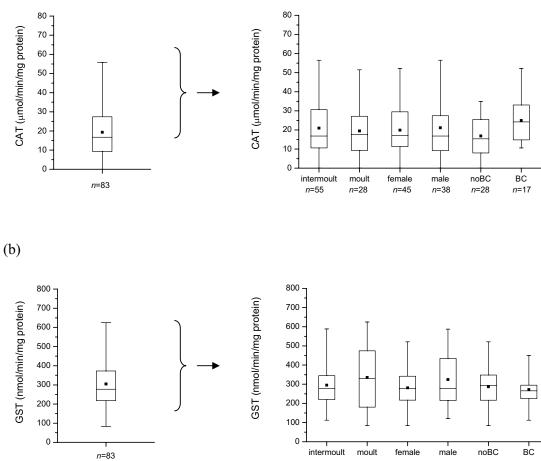
LOCATION 3

Days of cultivation in the laboratory

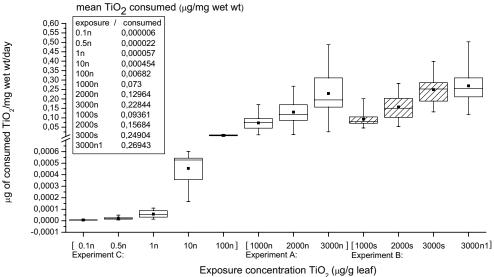

LOCATION 1



Days of cultivation in the laboratory


(f)

LOCATION 3



(a)

 $_{\rm H}g$ of consumed TiO $_{\rm 2}/\rm mg$ wet wt/day

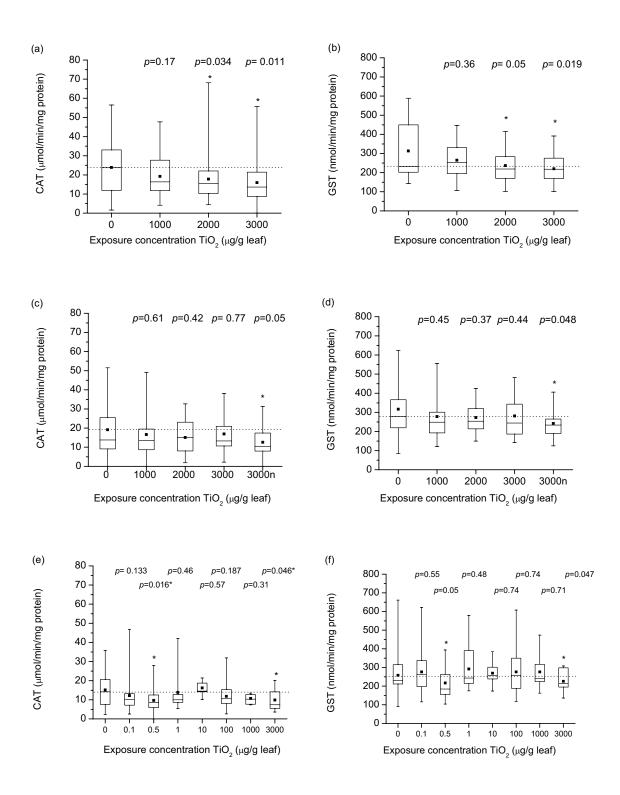
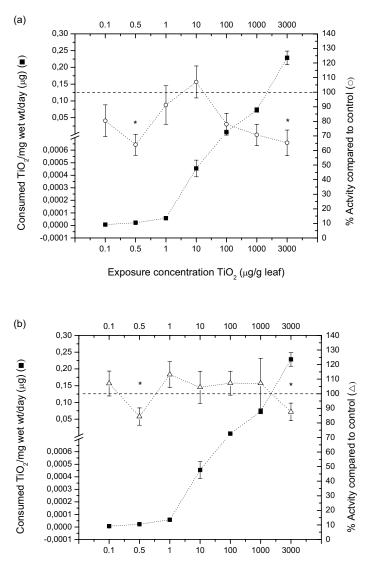



Fig. 6.

Exposure concentration TiO $_{2}$ (µg/g leaf)